Computational model could speed development of semiconductors useful in quantum applications

Credit: Doug Irving, North Carolina State University

Researchers from North Carolina State University used computational analysis to predict how optical properties of semiconductor material zinc selenide (ZnSe) change when doped with halogen elements, and found the predictions were confirmed by experimental results. Their method could speed the process of identifying and creating materials useful in quantum applications.

Creating semiconductors with desirable properties means taking advantage of point defects—sites within a material where an atom may be missing, or where there are impurities. By manipulating these sites in the material, often by adding different elements (a process referred to as ” …
Read more…….

Be the first to comment

Leave a Reply

Your email address will not be published.


*